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Abstract: In this paper, the feedback control methods are 

applied to a duopoly model based on heterogeneous 

expectations. This is the time-delayed feedback control of the 

production system. This control aims to bring this system into 

instability equilibrium by using delay of state variables．The 

validity of the control method is proved through theoretical 

analysis and numerical simulations．Moreover，scope of 

convergent condition is given．The production model can 

quickly reach Nash equilibrium after control, providing 

theoretical reference and production conditions to enterprises． 
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1  Introduction 

Oligopolistic market is a universal market mechanism, in 

which a trade is completely controlled by several firms. The 

firms manufacture the same or homogeneous products and 

they must consider not only the demand of marker, but also 

the actions of their competitors [1]. Game theory has been 

widely applied to oligopolistic markets thank to its ability to 

consider strategic interactions among firms. Oligopolist is 

competitive, and the basic solution which refers to 

competitive equilibrium in Cournot game is Nash equilibrium 

or Cournot equilibrium. The adjust dynamics to get the Nash 

equilibrium and the stability are studied by many works [2–9]. 

But just as what Nash equilibrium reveals, Nash equilibrium 

reflects individual rationality, but it violates collective 

rationality – Nash equilibrium of the duopoly game is not 

Pareto optimal. The prisoners’ dilemma shows that, there is a 

contradiction between individual rationality and collective 

rationality, and the correct choice based on individual 

rationality will reduce everybody’s welfare. In other words, 

Pareto improvement cannot be carried on and Pareto optimal 

cannot be realized by personal interest’s maximization. The 

main question which the prisoners’ dilemma poses is whether 

a cooperative behaviour can emerge among rational and 

self-interested players whenever there is no formal agreement 

[10]. In real economical markets we truly can observe that 

competitors are often able to achieve the cooperation.  

Although the duopoly game with output competition 

(Cournot game) is faced with prisoners’ dilemma (Nash 

equilibrium is not Pareto optimal), it cannot be studied in 

standard game model with prisoners’ dilemma. Because the 

collection of strategies in this model is a finite set, and in the 

output competition it is an infinite set. Cafagna [10] has built 

a strategy with output adjustment (the ‘good’ strategy), and 

makes the firms reach a cooperative equilibrium finally. The 

prisoners’ dilemma can be explained based on that. However, 

the ‘good’ strategy is based on the premise that producers 

completely know about their competitors’ output and profit. 

In fact, the producers with mutual competition, or even the 

producers who have achieved certain cooperation, keep the 

output, the profit and the related things as the business secrets 

for their own benefit. So the supposition of incomplete 

information is more rational. For example, in the model with 

two producers, as long as one producer does not know the 

other’s cost of production, it is impossible for the first 

producer to know about the other’s profit under different 

combination of bilateral outputs. That is to say, the first 

producer cannot have complete information. Then under the 

premise that each producer incompletely knows about the 

competitor’s information (output, profit and so on), is there a 

strategy of output adjustment for the producers to use to 

achieved a cooperative equilibrium? 

In this paper, we study that how firms get bigger profits 

by adjusting their own outputs. It is different from the paper 

[10-12] that the producers do not know about the market 

information of the competitor’s output and profit, and the 

cooperative behaviour in duopoly competition is considered 
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with the ‘‘tit-for-tat” conduct.  

 

2. The model 

There are two firms produce a homogeneous good in a 

market .Taking production decisions at discrete time periods 

1,2,3,...t = . Denoting the quantity of output by each firm at 

time t  is ( ), 1,2i tq i = . We have that cost function has the 

linear form: 

           , ,i t i i tc c q= (1)                             

Let ( )p Q denote the inverse demand function: 

         tp a b Q= -                   (2) 

Where , 0a b> , ia c>  and ,t i ti
Q q= å  

Then the profit of player i  at time t  is given by: 

                          

( ), ,i t i i ta b Q c qp = - -           (3) 

This paper is about cooperation under the incomplete 

information, and the following models are based on the 

assumption that the firms compare their own profits with the 

cooperative profit. The solving of the cooperative profit has 

been introduced in duopoly game theory. The cooperative 

profit means the profit which is solved by maximizing the 

sum of all firms’ profit. We consider the symmetrical case: 

1 2c c c= = ,then can get the cooperative profit, 

( )
3

2

2

27
c

a c

b
p

-
= ,and the cooperative output, 

2

2

2( )

9
c

a c
q

b

-
=  

 

3. The tit-for-tat dynamic strategy 

The tit-for-tat strategy is the best behaviour allowing the 

achievement of cooperation in repeated games [10]. Its 

characteristic is that every player consists in doing what the 

opponent did in the previous move. In the paper, we study the 

Cournot model with the tit-for-tat conduct. And the dynamic 

equations are based on the incomplete information. Each 

producer cannot obtain the competitor’s complete information, 

but he completely knows about his own output and profit. The 

firm i  can compare his profit ,i tp  at time t  with the 

cooperative profit cp  which is Pareto optimal. If the 

cooperative profit 
, 0c i tp p- < , then his own profit is more; 

he extrapolates that the competitor is cooperative, then he will 

properly reduce his output to continue the cooperation as a 

‘‘reward”1; Otherwise, if , 0c i tp p- > , the firm i  cannot 

realize the cooperative profit, and extrapolates that the 

competitor is not cooperative, then he will increase his output 

as ‘‘penalty”.2 For this case ,we get the dynamical systems of 

1q  , and 2q  as follows: 

( ) ( ), 1 , , ,i t i t i c i t i t i c iq q u q u a b Q cp p p+
é ù= + - = + - - -ê úë û

 (4) 

 where ( )1,2iu i = is a adjusting parameter, and 

0iu > .In this model ,Since the firms do not need know the 

competitor’s related information, it is an adjusting strategy 

with incomplete information. Although its form is simple, it is 

based on the thoughts of ‘‘tit-for-tat” strategy in prisoners’ 

dilemma game. Now the question is that whether the firms 

can achieve a cooperative Pareto optimality. With above 

assumptions, the duopoly game with heterogeneous players is 

described by a two-dimensional nonlinear map

( ) ( )( ) ( ) ( )( )1 2 1 2, 1 , 1T q t q t q t q t® + +  defined as :  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 2

2 2 2 2 2 1 2

1

:

1

c

c

q t q t u a c q t bq t q t q t

T

q t q t u a c q t bq t q t q t

p

p

í é ùï + = + - - + +ï ê úï ë ûï
ì
ï é ùï + = + - - + +ê úï ë ûïî

 (5) 

Where ( )iq t denotes productions of period t , 

( )1iq t + represent productions of period 1t +  

In the paper, we are considering an economic model 

where only nonnegative equilibrium points are meaningful. 

So we only study the nonnegative fixed points of the map (5), 

i.e. the solution of the nonlinear algebraic system as: 

1 1 1 2

2 2 1 2

( ) 0

( ) 0

c

c

a c q bq q q

a c q bq q q

p

p

íï - - + + =ïï
ì
ï - - + + =ïïî

        (6) 

 By setting ( ) ( )1 , 1,2i iq t q t i+ = = in system (5), we 

obtained (6).  

Then it is easy to work out an unique fixed point of 

system (6): ( )* *

1 2,E q q= ,where 

( )
2

* *

1 2 2

2

9
c

a c
q q q

b

-
= = =  
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The stability of these equilibriums is based on the 

eigenvalues of the Jacobian matrix of system (5)  

( )

1
1

1 2 1 2* *

1 2

2
2

1 2 1 2

1
2 2

,

1
2 2

u bb
u c a

q q q q
J q q

u b b
u c a

q q q q

æ öæ ö ÷ç ÷ç ÷÷ç ç+ - + ÷÷ç ç ÷÷ç ç ÷ ÷+ +è øç ÷ç ÷= ç ÷÷ç æ ö÷ç ÷÷çç ÷÷ç+ - +ç ÷÷çç ÷÷ç ÷ç + + ÷è øè ø

        

We compute the Jacobian matrix J at E then get 

( )

( ) ( )

( ) ( )

1 1

* *

1 2

2 2

1
6 6

,

1
6 6

u a c u a c

J q q
u a c u a c

æ ö- - ÷ç ÷-ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷- - ÷ç ÷-ç ÷çè ø

 

By calculation, we get the characteristic polynomial

( )P l of the matrix ( )* *

1 2,J q q as following: 

( ) 2 0p Tr Detl l l= - + =  

Where Tr  is the trace and Det  is the determinant of 

the Jacobian matrix ( )* *

1 2,J q q . 

( ) ( )1 2
2

6 6

u a c u a c
Tr

- -
= - -  

( ) ( )1 2
1

6 6

u a c u a c
Det

- -
= - -  

Then we have two eigenvalues of matrix ( )* *

1 2,J q q ,

1 1l =  and
( )( )1 2

2 1
6

u u a c
l

+ -
= - . If it holds that 

( )1,2iu i =  is very small, we have 2 1l < . Since 1 1l =  

is a critical condition we cannot know the stability of the 

system (5). But the following numerical  

Fig. 1a. The output of the system (4) is stable 

 

 

Fig. 1b. The profit of the system (4) is stable 

experiments show that its stability is sensitive to the 

parameter 

 

Fig. 2a The output t of the system (4) is unstable 

Fig. 2b. The profit of the system (4) is unstable 
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We take
1 28, 2, 0.0082,a c u u= = = =  and the 

initial value
1,0 2,08, 6q q= = . If we fix other parameters and 

vary one, for instance b, the stability of system changes . Fig. 

1 shows that it is stable, but if a parameter changes slightly, it 

is the contrary (Fig. 2). And Fig. 2 shows that the output and 

the profit not only cannot achieve the Pareto optimality, but 

also appears the phenomenon of malignant competition – the 

outputs of both sides increase infinitely (Fig. 2A), while the 

profits approach to zero (Fig. 2B). That is to say, the firms in 

Cournot game cannot achieve the Pareto optimal equilibrium 

under the adjustment Eq. (4) 

 

4. Delayed feedback control of the production system 

 

4.1  By adding a time-delayed feedback control, we 

consider a new strategy: 

( )( ) ( )

( )( )

1,t+1 1, 1 1, 1, 2, 1, 1, 1

2,t+1 2, 2 2, 1, 2,

q

q

t c t t t t t

t c t t t

q u a c q b q q k q q

q u a c q b q q

p

p

-
íï = + - - + + + -ïï
ì
ï = + - - + +ïïî

(7) 

Where ( )1,2iu i =  is an adjustment parameter , 

and 0iu > , ( )1, 1, 1t tk q q --  is the delayed feedback 

control of the system. (7) equivalent to the following 

three-dimensional equations: 

( )( ) ( )

( )( )

1,t+1 1, 1 1, 1, 2, 1, 1, 1

2,t+1 2, 2 2, 1, 2,

3,t+1 1,

q

q

q

t c t t t t t

t c t t t

t

q u a c q b q q k q q

q u a c q b q q

q

p

p

-
íï = + - - + + + -ïïïïï = + - - + +ì
ïïï =ïïïî

(8) 

The Jacobian matrix at ( )* * *

1 2,E q q=  takes the form: 

( )

1
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    By calculation, we get the characteristic polynomial 

( )f l  of the matrix ( )* *

1 2,J q q as following: 

( ) 3 2

1 2 3 0f B B Bl l l l= + + + =  
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From Jury conditions, the necessary and sufficient 

conditions for 1, 1,2,3i il < =  are: 

1 2 3

1 2 3
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Fig3a 
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So the equilibrium point 
*E of the system (7) is 

stable, if the conditions in (9) are all satisfied. 

We reconsider the unstable situation 

(
1 2 1,0 2,08, 1.09, 2, 0.0082, 8, 6a b c u u q q= = = = = = = ) in 

Section 3. Let 0.4k = ，now the output and profit system 

(7) become stable, as showed in Fig. 3(blue line) . In 

Fig.3a,the blue point shows that the changes of 

Productions1,2,when adds a time-delayed feedback control 

strategy. In Fig.3b,the blue point shows the proft. 

 

4.2  By adding two time-delayed feedback control, we 

consider a new strategy: 

1, 1 1, 1 1, 1, 1, 2, 1 1, 1, 1

2, 1 2, 2 2, 2, 1, 2, 2 2, 2, 1

( ( ) ) ( )

( ( ) ) ( )

t t c t t t t t t

t t c t t t t t t

q q u a c q bq q q k q q

q q u a c q bq q q k q q

p

p

+ -

+ -

íï = + - - + + + -ïï
ì
ï = + - - + + + -ïïî

(10) 

Where ( )1,2iu i =  is an adjustment parameter , and

0iu > , ( )1, 1, 1i t tk q q --  is the delayed feedback control 

of the system. (10) equivalent to the following 

four-dimensional equations:

1, 1 1, 1 1, 1, 1, 2, 1 1, 3,

2, 1 2, 2 2, 2, 1, 2, 2 2, 4,

3, 1 1,

4, 1 2,

( ( ) ) ( )

( ( ) ) ( )

t t c t t t t t t

t t c t t t t t t

t t

t t

q q u a c q bq q q k q q

q q u a c q bq q q k q q
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p
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+

+

+

+

íï = + - - + + + -ïïïï = + - - + + + -ïï
ì
ï =ïïïï =ïïî

(11) 

The Jacobian matrix at ( )* * *

1 2,E q q=  takes the form : 
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By calculation, we get the characteristic polynomial 

( )f l  of the matrix ( )* *

1 2,J q q as following: 
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2
* *

1 2 2

2( )

9

a c
q q

b

-
= =  

From Jury conditions, the necessary and sufficient 

conditions for 1, 1,2,3,4i il < =  are: 

1 2 3 4

1 2 3 4

4

4 1

1 3

1 0

1 0

1

B B B B

B B B B

B

A A

C C

íï + + + + >ïïïï - - - + >ïïï <ì
ïïï <ïïïï <ïî

        （12） 

Where 
1 1 2B M M= + ，

2 1 2 2B M M k= + ，

2

1, 2,

3 1 2 1

1, 2,4( )

t t

t t

b q q
B k k M

q q
= - -

+
，

4 1 2 1 2B k k k M= - ；

2

1 11A B= - ，
2 1 3 4A B B B= - ，

3 2 2 4A B B B= - ，

4 3 1 4A B B B= - ， 2 2

1 4 1C A A= - ，
2 4 3 1 2C A A A A= - ，

3 4 2 1 3C A A A A= - . 

So the equilibrium point 
*E of the system (10) is 

stable, if the conditions in (12) are all satisfied. 

We reconsider the unstable situation 

(
1 2 1,0 2,08, 1.09, 2, 0.0082, 8, 6a b c u u q q= = = = = = = ) in 

Section 3. Because it(12) is so hard to solve, we give the 

control results 1 0.85k = ， and 2 0.2k = .  Let 

1 0.85k = ，and 2 0.2k = . Now the output and profit 

systems (10) become stable, as Fig. 3 shows. In Fig.3a,the 

red point shows that the changes of Productions1,2,when  

both  manufacturers introduce  time-delayed feedback 

control strategy. In Fig.3b,the blue point shows the proft. 

Through numerical simulation，we obtained the results 

(Fig 3). This two methods can also control unstable system 

to achieve stable state. The stability of two strategies is at 

the same point ; It also shows that two manufacturers 

introducing time-delay feedback will make the early 

production more violently shocks . If the control is bad, it 

may lead the field production into chaos, thereby affecting 

the market stability and economic benefits. However, by 

introducing two time-delay feedbacks will make system 

achieve stability in shorter time than by adding one. 

5. Conclusion 

This article is about Cournot game for the competition 

of output. And we have studied two strategies of output’s 

adjustment under incomplete information – the tit-for-tat 

strategy with time-delayed feedback. In conclusion, the 

cooperation may be achieved under the tit-for-tat strategy. 

But the stability of the adjustment system is sensitive to the 

parameters, and the Pareto Optimality cannot be assured. 

By introducing the feedback control to the cooperation 

intention of the players, the firms’ cooperation can be 

achieved, and the Pareto Optimality is stable within the 

parameters’ certain field. So the cooperation can be the 

result of such a strategy under the certain condition. 
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